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Abstract

Di�erent theoretical models have tried to investigate the feasibility of recurrent neural mechanisms
for achieving direction selectivity in the visual cortex. The mathematical analysis of such models has
been restricted so far to the case of purely linear networks. We present an exact analytical solution of the
nonlinear dynamics of a class of direction selective recurrent neural models with threshold nonlinearity.
Our mathematical analysis shows that such networks have form-stable stimulus-locked traveling pulse
solutions that are appropriate for modeling the responses of direction selective cortical neurons. Our
analysis shows also that the stability of such solutions can break down giving raise to a di�erent class
of solutions ("lurching activity waves") that are characterized by a speci�c spatio-temporal periodic-
ity. These solutions can not arise in models for direction selectivity with purely linear spatio-temporal
�ltering.
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1 Introduction

Direction selectivity in the primary visual cortex has been accounted for by feed-forward (e.g. [10, 5, 11, 1])
as well as by recurrent neural mechanisms [6, 7, 8]. The mathematical analysis of recurrent mechanisms for
direction selectivity has so far been based on methods from linear systems theory by neglecting the nonlinear
properties of the neurons. The nonlinear dynamic phenomena resulting from the interplay between the
recurrent connectivity and the nonlinear threshold characteristics of the neurons have not been tractable in
this theoretical framework.

In this paper we present a mathematical analysis that takes the nonlinear behavior of the individual
neurons into account. We present the result of an analysis of networks with two di�erent types of threshold
nonlinearities for which closed-form analytical solutions of the network dynamics can be derived. Our
result extends previous mathematical work on the the dynamics of nonlinear cortical networks with strong
recurrent feedback [2, 14, 4] to the case of stimulus-driven moving solutions in networks with asymmetric
lateral connections.

We show that nonlinear recurrent networks with asymmetric lateral connections have a class of form-
stable solutions, in the following signi�ed as stimulus-locked traveling pulses, that are suitable for modeling the
activity of direction selective neurons. The stability of the traveling pulse solutions of the nonlinear network
can break down giving raise to another class of solutions (lurching activity waves) that is characterized
by spatio-temporal periodicity. Our analysis showed that networks with a biologically realistic degrees of
direction selectivity typically also show transitions between traveling pulse and lurching solutions.

2 Basic model

Ensembles of direction selective neurons with the same receptive �eld center and preferred speed are modeled
as points of a continuous neural media, or neural �eld. Spatially continuous models have been proposed before
to analyze the dynamic behavior of a large ensembles of neurons in the visual cortex [12, 2, 9, 14]. The scalar
quantity u(x; t) represents the activity of neurons with receptive �eld center x at time t. Its dynamics is
given by the integro-di�erential equation:

� _u(x; t) + u(x; t) =

Z
w(x � x0)f(u(x0; t)) dx0 + b(x; t) (1)

The function f is nonlinear and characterizes the relationship between the input current and the �ring
rate of the individual neuron ensembles. Two di�erent forms of this nonlinearity are discussed below. �
is a time constant of the dynamics. The function w(x) characterizes the strength of the excitatory and
inhibitory lateral connections, dependent on the positions of the neurons in the neural �eld. Direction
selectivity arises when this function is asymmetric. In the following we always assume that the stimulus
has a constant shape that is translating with the constant stimulus velocity v, leading to an input signal
distribution b(x; t) = B(x� vt) in the neural dynamics.

To analyze the dynamics Eq. (1) we introduce a new coordinate system that moves together with the
stimulus by de�ning the new spatial coordinate y = x�vt and the activity distribution U(y; t) = u(x; t) (Cf.
[14]). This results in the dynamics:

�
@

@t
U(y; t)� �v �

@U(y; t)

@y
+ U(y; t) =

Z
w(y � y0)f(U(y0; t)) dy0 +B(y) (2)

A stationary solution in the moving frame corresponds to a traveling pulse solution with velocity v in the
original stationary coordinate system. We will analyze below the existence and stability of form-stable
solutions of the nonlinear integro-di�erential equation Eq. (2) for two cases, in which closed-form solutions
can be derived.
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3 Analysis for step function threshold

The nonlinear activation function is taken to be the Heaviside step function f(z) = �(z), where �(z) = 1 for
z > 0, and zero otherwise. The dynamics with a constant input was analyzed by Amari [2], whose approach
does not apply directly to Eq. (1) because of the presence of the spatial gradient. We assume in the following
the existence of a single activation peak, and we signify by the interval I = [y1(t); y2(t)] the set of neurons
with non-negative activation (U(y; t) � 0). Using the fact that, by continuity, U(y1; t) � U(y2; t) � 0 we can
derive the following self-consistent equations for the boundaries of the interval I in the stationary state

~W (y�1 � y�2)� ~W (0) = ~B(y�1) (3)
~W (0)� ~W (y�2 � y�1) = ~B(y�2) (4)

with W (z) =
R z
0
w(y)dy and the functions ~W (y) = O[W (y); �v] and ~B(y) = O[B(y); �v], where O is the

integral operator de�ned by

O[g(z);�] =

8><
>:

1
�

R
1

x
g(z0) exp( z�z

0

� ) dz0 for � > 0

g(z) for � = 0
�1
�

R z
�1

g(z0) exp( z�z
0

� ) dz0 for � < 0.

(5)

The stationary solution is completely de�ned by the two boundary points y�1 and y�2 through U�(y) =
~W (y�y�1)�

~W (y�y�2)+
~B(y). The stability of this solution is analyzed by perturbing U�(y). The dynamics

of the perturbation ÆU(y; t) is given by the linearized dynamics

�
@ÆU

@t
� �v

@ÆU

@y
+ ÆU(y; t) =

w(y � y�1)

c�1
ÆU(y�1 ; t)�

w(y � y�2)

c�2
ÆU(y�2 ; t) (6)

where c�i = @U�(yi)=@y for i = 1; 2 are gradients of U�(y) at boundaries.
By solving the perturbation dynamics using Laplace transformation it can be shown that the stationary

solution is asymptotically stable if the following equation

(G(0; s)� c�1)(G(0; s) + c�2) = G(y�1 � y�2 ; s)G(y
�

2 � y�1 ; s) (7)

with G(z; s) = O[w(z); �v=(1� �s)] has no solutions in the open right half of the complex plane (i.e. for
Refsg > 0).

4 Analysis for half-wave rectifying threshold

The general proceeding used in section 3 can in principle be extended for networks with half-wave rectifying
threshold. In the general case, however, no closed form solutions can be derived (See [13]). A closed form
solution can be obtained by extending methods from [4]. Assume that the network is de�ned over the
periodic spatial domain [��=2; �=2]. When the stimulus distribution and the interaction kernel have only
a small number of Fourier components, a closed form solution can be derived. We analyzed the case for
B(x) = b0+ b2 cos(2(x�xb)) and w(x) = w0+w2 cos(2(x�xw)) with bi, wi, and xb and xw being constants.
In this case the dynamics is fully determined by the behavior of the order parameters

r0(t) =

Z �=2

��=2

dx0

�
u(x0; t) (8)

r2(t) =

Z �=2

��=2

dx0

�
u(x0; t) e2i(x

0
�	(t)) (9)
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where 	(t) is chosen as to keep r2 real. r0(t) measures the mean neural activities across the network and r2(t)
signi�es the spatial modulation in the activity pro�le of u(x; t). Di�erent from Hansel's and Sompolinsky's
model [4], the network we analyzed is stimulus driven and uses an asymmetric interaction kernel. The details
of the mathematical analysis are given in [13].

Figure 1 shows the comparison between the results from the mathematical analysis and simulations.
(The network with step threshold leads to very similar simulation results). Panel A shows the speed tuning
curve plotted as values of the order parameters r0 and r2 with respect to di�erent stimulus velocities v.
The solid lines indicate the numerical simulation results, and the dotted lines the results from the analytical
solution. For both, the analytical and the simulated solution the velocity tuning curve depends critically
on the asymmetrical part of the interaction kernel. The asymmetry determines in particular the optimal
velocity of the direction selective neurons [13]. Panel B shows the largest real part of the eigenvalues of a
stability matrix that can be obtained by linearizing the order parameter dynamics around the stationary
solution. For small and very large stimulus velocities the largest real parts of the eigenvalues become positive
indicating a loss of stability of the form-stable solution. To verify this result we calculated the variances of
the order parameters r0 and r2 over time from the simulations. Panel C shows the average variations as
function of the stimulus velocity. At the velocities for which the eigenvalues indicate a loss of stability the
variability of the amplitudes suddenly increases, consistent with our interpretation.

An interesting observation is illustrated in panels D and E that show a color-coded plot of the space-time
evolution of the activity. Panel E shows the propagation of the form-stable peak over time. Panel D shows
the solution that arises when stability is lost. This solution is characterized by a spatio-temporal periodicity
that is de�ned in the moving coordinate system by U(y; t+nT0) = U(y; t), T0 being a constant that depends
of the network dynamics. Solutions of this type have been described before in spiking thalamic networks [3].
We found that this solution type arises very robustly for both types of threshold functions when the network
achieved substantial direction selective behavior.

5 Conclusion

We have presented di�erent methods for an analysis of the nonlinear dynamics of simple recurrent neural
models for the direction selectivity of cortical neurons. Compared to earlier work, we have taken into account
the essentially nonlinear e�ects that are introduced by the nonlinear threshold characteristics of the cortical
neurons. The key result of our work is that such networks have a class of form-stable traveling pulse solutions
that behave similar as the solutions of linear spatio-temporal �ltering models within a certain regime of
stimulus speeds. By the essential nonlinearity of the network, however, bifurcations can arise for which the
traveling pulse solutions become unstable. We observed that in this case a new class of spatio-temporally
periodic solutions ("lurching activity waves") arises. Since we found this solution type very frequently for
networks with substantial direction selectivity our analysis suggests that such "lurching behavior" might be
observable in the primary visual cortex, providing strong evidence for the hypothesis that direction selectivity
is essentially based on lateral connectivity. An experimental demonstration of this e�ect might, however, be
complicated by the mutual inhibition of neuron ensembles that are selective for di�erent stimulus speeds.

Acknowledgements We thank H.S. Seung and T. Poggio for very helpful comments.
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Figure 1: Traveling pulse solution and its stability for the half-wave rectifying threshold model. Panel A
shows the velocity tuning curves of the order parameters r0 and r2. The solid lines indicate the results
from the numerical simulation, while dotted lines represent the results from the analytical solution. Panel B
shows the maximum real part of the eigenvalues of a stability matrix that can be obtained from perturbed
linear dynamics around the stationary solution. For small and very large stimulus velocities the largest real
part of the eigenvalues becomes positive indicating a loss of stability of the form-stable solution. Panel C
shows the average variances over time of the order parameters r0 (blue curve) and r2 (green curve) obtained
from the simulation. A nonzero variance signi�es a loss of stability of the traveling pulse solution. This
result is consistent with eigenvalue analysis in Panel B. A color coded plot of spatial-temporal evolution of
the activity u(x; t) is shown in panels D and E. Panel E shows the propagation of the form-stable peak over
time. Panel D shows the lurching activity wave that arises when stability is lost.
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